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Abstract 
 
It is now widely recognized that landscapes are complex systems composed of multiscale hierarchically 
organized entities that interact within unique spatial and temporal scales. These interactions result in 
scale-dependent spatial patterns that visually change, depending upon their scale of observation. Remote 
sensing platforms represent the primary data source from which such landscape patterns can be 
observed and assessed, but suffer from the modifiable areal unit problem (MAUP). The clearest way out 
of MAUP is by using objects, as objects constitute a non-arbitrary representation of space. Consequently, 
their aggregation and scaling contains implicit ecological meaning. Therefore, to appropriately monitor, 
model, and manage our interaction within landscapes, we require a multiscale approach that judiciously 
integrates ecological theory, remote sensing data and spatial modeling capabilities for the automatic 
delineation, hierarchical linking, evaluation, and visualization of dominant landscape objects through 
scale. Furthermore, this approach should be guided by the intrinsic scale of the varying sized, shaped, 
and spatially distributed image-objects that compose a remote sensing scene.  
 
In an effort to achieve this, we present Multiscale Object-Specific Analysis (MOSA) as a novel approach 
for automatically upscaling and delineating multiscale landscape structures from a high-resolution remote 
sensing image. MOSA is composed of three primary components: Object-Specific Analysis (OSA), 
Object-Specific Upscaling (OSU) and Marker Controlled Watershed Segmentation (MCS). OSA is a 
multiscale approach that automatically defines unique spatial measures specific to the individual image-
objects composing a remote sensing scene. These object-specific measures are then used in a weighting 
function to automatically upscale (OSU) an image to a coarser resolution by taking into account the 
spatial influence of the image-objects composing the scene at the finer resolution. Because image-
objects, rather than arbitrary pixels, are the basis for upscaling, the effects of the modifiable areal unit 
problem (MAUP) are reduced. MCS is then applied to the newly upscaled data to automatically segment 
them into topologically discrete image-objects that strongly correspond to visually defined image-objects. 
The elegance of utilizing MCS as a feature detector is that it requires inputs that are automatically and 
explicitly met by the OSA/OSU outputs. Analysis is performed on an IKONOS-2 image (acquired August, 
2001) that represents a highly fragmented agro-forested landscape in the Haut St-Laurent region of 
south-western Québec, Canada. 

                                            
1 An extended version of this work appears in: 

Hay, G. J., and Marceau, D. J. 2004. Multiscale Object-Specific Analysis (MOSA): An integrative 
approach for multiscale landscape analysis. In: S. M. de Jong & F. D. van der Meer (Eds). Remote 
Sensing and Digital Image Analysis: including the spatial domain. Book series: Remote Sensing 
and Digital Image Processing. Volume 5. Chapter 3. Kluwer Academic Publishers, Dordrecht (in 
press). 
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1. Introduction 
 
Landscapes are increasingly regarded as complex systems composed of a large number of spatially 
heterogeneous components that interact in a non-linear way and exhibit emergence, self-organization 
and adaptive properties through time (Waldrop, 1992; Prigogine, 1997; Kay and Regier, 2000; Wu and 
Marceau, 2002). An important characteristic of complex systems is that their hierarchical structure is 
defined at different critical levels of organization where interactions are stronger within levels than among 
levels, and where each level operates at relatively distinct temporal and spatial scales (Simon, 1962; 
Allen and Starr, 1982). Therefore, scale is central to the realization of hierarchy and the organization of 
landscapes (Levin, 1992).  
 
In general terms, scale refers to the spatial dimensions at which entities, patterns and processes can be 
observed and measured. From an absolute perspective, scale corresponds to a standard system, such as 
cartographic scales and census units, used to partition geographical space into operational spatial units. 
From a relative framework, scale is a variable intrinsically linked to the entities under observation, and 
corresponds to one’s window of perception. Thus every scale reveals information specific to its level of 
observation (Marceau, 1999). As defined in landscape ecology, scale is composed of two fundamental 
parts: grain and extent. Grain refers to the smallest intervals in an observation set, while extent refers to 
the range over which observations at a particular grain are made (O’Neill and King, 1998). In remote 
sensing, scale corresponds to the spatial, spectral, temporal, and radiometric resolution of the sensor. 
Here the term spatial resolution is equivalent to grain, while extent represents the total area that an image 
covers. In this discussion, small scale refers to a small area, and large or coarse-scale represents a large 
area. 
 
Scale has been recognized as a key component for understanding the structure and the spatio-temporal 
dynamics of landscapes for more than fifty years and has been the subject of an abundant literature (for a 
review, see Marceau, 1999; Marceau and Hay, 1999). During this time, two principal challenges have 
been addressed, respectively known as the scale and scaling problem. The former refers to identifying 
the ‘natural’ or preferred scale(s) at which ecological patterns and processes occur, while the later refers 
to deriving appropriate rules for transferring data or information across scales (Caldwell et al., 1993; 
Jarvis, 1995). Theoretical frameworks, such as Hierarchy theory (Allen and Star, 1982; O’Neill et al., 
1986) and the Hierarchical patch dynamics paradigm (HPDP - Wu and Loucks, 1995) have been 
proposed to express the intricate relationship among pattern, process, and scale explicitly in the context 
of landscapes, and to provide an operational framework for scaling. Useful concepts such as scale 
domain and scale threshold have also been defined. A scale domain represents a segment of the scale 
spectrum where patterns do not change, or change monotonically with changes in scale, while a scale 
threshold defines the end or beginning of a scale domain (Meentemeyer, 1989). 
 
More recently, another challenge that has been identified as a mandatory requirement for deciphering the 
complexity of landscapes is referred to as multiscale analysis. The rationale behind multiscale analysis is 
as follows. Since landscapes are known to exhibit distinctive spatial patterns associated to different 
processes at different scales, landscape analysis performed at a unique scale is doomed to be 
incomplete and misleading (Marceau et al., 1994a; Hay et al., 1997; Wu et al., 2000). Furthermore, there 
is no way of defining a priori what are the appropriate scales associated to specific patterns. In addition, 
scaling requires obtaining information about the patterns (and processes) occurring at a range of scales 
in order to detect scale thresholds and derive adequate rules for the transfer of information through 
multiple scales. Thus, it is imperative to develop a multiscale approach that allows dominant patterns to 
emerge at their characteristic scales, with no a priori user knowledge, in order to obtain adequate and 
complete information about the vertical structure of the landscape.  
 
The idea of multiscale analysis is not new. Wu et al. (2000) distinguish between two general approaches 
for multiscale analysis that have been developed and applied over the last four decades: the direct and 
indirect approaches. An indirect approach refers to the use of a dataset acquired or resampled at a series 
of discrete scales. An example is provided by Marceau et al. (1994a,b) who resampled high-resolution 
airborne data at different resolutions to study the impact of scale and spatial aggregation on classification 
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accuracy results. The principal limitations of the indirect approach are that scales are arbitrarily chosen 
and do not represent the full vertical continuum of landscapes. Consequently, significant patterns and 
processes can go undetected or erroneously identified.  
 
In contrast, the direct multiscale approach attempts to capture the dominant patterns as they emerge at 
specific scales from a unique dataset. A number of computational techniques developed to generate 
multiscale representations (Starck et al., 1998) can be associated to this group. These include fractals 
(Mandelbrot, 1967), quadtrees (Klinger, 1971), spectral analysis (Platt and Denman, 1975), pyramids 
(Klinger and Dyer, 1976), wavelets (Daubechies, 1988), beamlets (Donoho and Huo, 2000), scale space 
(Lindeberg, 1994; Hay et al., 2002a), and multiscale object-specific analysis (MOSA) (Hay, 2002; Hay et 
al., 2003). 
 
Among these, the last method exhibits novel characteristics that are of significant importance for 
multiscale landscape analysis: 
 
� First, MOSA has been developed for the particular spatial sampling context provided by remote 

sensing imagery. This is important as remote sensing technologies represent an unprecedented 
means to gather data at a wide range of spectral, spatial and temporal resolutions, which can be used 
to address a number of challenges related to the scale issue (Marceau and Hay, 1999). 

 
� Second, this approach is based on an object-specific framework (Hay et al., 1997; 2001). This means 

that individual image-objects rather than arbitrary spatial units are the basis for analysis and scaling. 
Image-objects are considered as perceptual entities that visually represent objects in an image that 
are composed of similar digital numbers/grey-tones, and which model real-world entities. Such an 
object-based approach offers two main advantages. First, it reduces the effect of the modifiable areal 
unit problem (MAUP). The MAUP originates from the use of arbitrarily defined and modifiable spatial 
units used to acquire data over a geographical area (Openshaw, 1984). Examples are provided by 
remote sensing data (Marceau et al., 1994a; Marceau and Hay, 1999) and census data. Because 
these data do not explicitly correspond to geographical entities, but rather are an aggregation of the 
content of the spatial units, the value of the analysis results based upon them may not possess any 
validity independently of the units that are used. One way to overcome the MAUP is to focus the 
analysis on meaningful geographical entities (or objects) rather than arbitrary defined spatial units 
(Fotheringham and Wong, 1991). An additional advantage of the object-specific approach is that it 
explicitly considers the hierarchical structure of the landscape by allowing the aggregation of smaller 
landscape components into the larger objects they are part of at their next scale of expression. 

 
� Finally, this object-specific framework satisfies two major requirements for multiscale analysis (Hay et 

al., 2002a). First, the generation of datasets that represent a range of ‘natural’ scales from which 
objects can be detected. And second, the automatic delineation of individual objects as they evolve 
through scale. 

 
In an effort to better understand complex landscape behavior through scale, we propose a multiscale 
approach that judiciously integrates ecological theory, remote sensing data and spatial modeling 
capabilities for the automatic delineation, evaluation, and visualization of dominant landscape objects 
through scale. Because there exists no single optimal scale for analyzing the myriad different spatial 
characteristics of landscape components (Marceau et al., 1994 a, b; Hay et al., 1997), we suggest that an 
effective multiscale approach should be guided by the intrinsic scale of the varying sized, shaped, and 
spatially distributed ‘image-objects’ that compose a remote sensing scene, rather than a static (and often 
arbitrary) user-defined scale of analysis (Hay et al., 2001). Based upon these ideas, the objective of this 
paper is to present a detailed description of Multiscale Object-Specific Analysis (MOSA) as a novel 
upscaling approach that reduces the effects of MAUP, and automatically delineates multiscale landscape 
structure from a single scale of remote sensing imagery. This will be accomplished by describing the 
remote sensing dataset used for analysis, followed by a detailed description of the three components of 
MOSA – Object Specific Analysis (OSA), Object Specific Upscaling (OSU), and Marker Controlled 
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Segmentation (MCS). We will then conclude by outlining the overall benefits, limitations, and future 
research of this approach. 
 
2.  Methods  
 
The methodological framework developed in this study represents an integration of techniques and 
concepts ranging from Landscape Ecology and Computer Vision, to Geographic Information Science. As 
a result, a number of different computer software programs were employed. Unless explicitly stated, all 
object-specific code was written by the first author in IDL 5.6 (http://www.rsinc.com/idl), and marker-
controlled segmentation code was written in Matlab 5.1 (http://www.mathwork.com). 
 
2.1 Remote sensing dataset 
 
The remote sensing image used in this study is a 500 x 500 pixel sub-image of a panchromatic IKONOS-
2 (Geo) scene acquired in August 2001, over a highly fragmented agro-forested landscape in the Haut-St-
Laurent region in south-west Quebec, in Canada (Figure. 1). This site is composed of an agricultural 
matrix textured with forest patches of varying size and shape. Three land-use classes dominate the 
scene: Agriculture, Fallow land and Forest. In order to illustrate how image-objects evolve through scale 
over a relatively large extent (i.e., 2 km) while still maintaining a fine level of detail, the panchromatic 
image was resampled from its original 1 m spatial resolution to 4 m using the object-specific upscaling 
technique, which is considered a robust upscaling technique (Hay et al., 1997). 
 
2.2 MOSA description 
 
MOSA represents an integration of three principal methods: Object-Specific Analysis (OSA), Object-
Specific Upscaling (OSU), and Marker Controlled Watershed Segmentation (MCS). In general terms, 
OSA is a multiscale approach that employs different sized adaptive kernels to automatically define unique 
spatial measures specific to the individual image-objects composing a remote sensing scene (Hay et al., 
1997, 2001). These ‘object-specific’ spatial measures are then used in a weighting function to 
automatically upscale (OSU) the image to a coarser resolution by taking into account the spatial influence 
(i.e., area) of the image-objects composing the scene at the finer resolution. Because image-objects, 
rather than arbitrary pixels, are the basis for upscaling, the effects of the modifiable areal unit problem 
(MAUP) are reduced in the upscaled image. MCS is then applied to the newly upscaled data to 
automatically segment them into topologically discrete image-objects that strongly correspond to visual 
interpretation. The elegance of utilizing MCS as a feature detector is that it requires inputs that are 
automatically and explicitly met by OSA/OSU outputs. Details regarding each component and their 
interaction are provided in the following sections. 
 
2.2.1 Object-specific analysis (OSA) 
 
Strahler et al. (1986) noted that in a remote sensing image, two fundamental resolution types exist:  
 
1. Low-resolution (L-res): where pixels are larger than image-objects; thus, a single pixel represents an 

integration of many smaller image-objects;  
2. High-resolution (H-res): where pixels are smaller than image-objects; consequently, a single image-

object is composed of many individual pixels. 
 
In object-specific analysis, we are interested in defining the detailed spatial characteristics of individual 
image-objects. Consequently, an underlying premise of OSA is that all pixels within an image are 
exclusively considered high-resolution samples of the image-objects they model, even though, both high- 
and low-resolution (L-res) samples exist in a single image. This is because pixels represent the 
fundamental primitive from which all image-objects are generated. Thus individual pixels are required to 
define the larger image-object(s) they are a part of.  
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OSA thresholds and heuristics 
 
Hay et al. (1997) observed that when plotting the variance of digital values generated by sampling image-
objects within increasingly larger kernels, the resulting plots produced curves with distinct breaks, or 
‘thresholds’ in variance as the analyzing kernel contacted the image-object’s edges (for a more detailed 
discussion, see Hay et al., 2001). After many hundreds of experiments on different sized, shaped and 
spatially arranged image-objects ranging from text, human faces, unique sized and shaped geometric 
shapes, to trees, roads and fields in H-res airborne imagery, it became apparent that the kernel size 
defined at these thresholds strongly corresponded to the known size (i.e., area) of specific image-objects. 
As a result, the shape of these variance curves was used to create a set of robust heuristics that define 
the spatial extent (i.e., kernel area) where an individual pixel is spectrally related to the image-object it is 
a part of. Rather than a single threshold value being used for all sizes of analyzing kernels, we have 
defined three robust threshold values that are representative of the pixel/image-object relationship over of 
a specific range of scales. In fact, a single threshold value does not work for all scales, thus supporting 
the concept of scale domains. 
 
The primary OSA heuristic is composed of three different percentage values, each of which represents 
the difference in variance defined between two concurrent kernels over a specific range of kernel sizes. If 
the difference in variance between the two kernels is less than or equal to the heuristic threshold value, 
processing is stopped. When a ‘threshold’ is reached, the corresponding mean, variance and area values 
are also recorded for the pixel under analysis within the specified kernel. This dynamic process is then 
applied to all the remaining pixels within the original image (OI), resulting in the generation of 
corresponding Variance (VI), Area (AI), and Mean (MI) images. These three images are referred to as the 
first image-set (IS1) (i.e., V1, A1, M1), and this form of adaptive-kernel processing is referred to as object-
specific analysis.  
 
The variance image is essentially a gradient or edge image. Bright tones correspond to high variance 
values, thus the edge between two or more image-objects, while dark tones indicate low variance, or 
homogeneity, thus more ‘object-like’. The area image defines the spatial influence, i.e., the kernel size or 
number of pixels ‘spectrally related’ to the pixel under analysis. Dark tones represent small area values, 
which correspond to object centers, while bright tones represent large area values. The mean image is 
composed of an average of the H-res pixels that constitute part of individual objects assessed at their 
respective scales; thus the mean image is a model of what the scene looks like at the next level of (non-
linear) multiscale analysis. 
 
The OSA kernel  
 
For simplicity and convenience, object-specific analysis was initially conducted using odd sized square 
kernels i.e., 3 x 3, 5 x 5, etc (Hay, 1997). However, based on the relationship between 2D Gaussian filters 
and mammalian vision (Hay et al., 2002a), and the diagonal bias inherent to square kernels, a square 
approximation of a round kernel was developed and used (Hay et al., 2001). To further improve the 
sensitivity of this kernel for defining complex edges, two different sized ‘round’ kernels are currently 
assessed within the same kernel diameter. This new filter set has resulted in improved sensitivity to object 
edges, faster processing and the minimization of the diagonal bias inherent to square kernels (Hay and 
Marceau, 2004). 
 
2.2.2 Object-specific upscaling (OSU) 
 
The unique area values defined for each pixel by OSA are used as part of an inverse area weighting 
scheme to upscale an image to a coarser resolution. The resolution of the upscaled image can either be 
defined manually according to user requirements, or automatically by statistical properties of the objects 
composing the image. Because both of these upscaling forms take into account object-specific weights, 
they are referred to as object-specific upscaling. In the following section, we report on the automated 
method. 
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The OSU resampling heuristic 
 
An important premise of OSA is that spatially dominant objects should have greater ‘influence’ in the 
upscaled image than smaller objects. We intuitively recognize this attribute when we move away from a 
local scene. Smaller objects seem to disappear while larger objects persist. An explanation for this is 
partly found in Slater (1980). If an object is less than ¼ the size of the instantaneous field of view (IFOV) 
of the sensor, its influence in the corresponding pixel is equal to the point spread function (PSF) of the 
sensor – which in modern sensors is typically very small. In essence, if the object of interest is less than 
¼ the size of the smallest resolvable component in the scene, the sensor is unable to visually detect it. 
From an object-specific perspective, this translates as: if an image-object is composed of fewer pixels 
than the smallest kernel can discern, its spatial characteristics cannot be defined.  
 
Since the ¼ resampling heuristic describes how the signal of real-world components are modelled by a 
sensor, we adopt it for automatically defining appropriate minimum upscale resolutions in the following 
manner: 
 

upscale_res = pixel_size + (pixel_size  x  min_win x  res_heur)    [1] 
 
where: 
 
� upscale_res represents the length (i.e., diameter) of the square upscale kernel defined in pixel units 

that are equivalent to those of the original image; 
� pixel_size initially is the value 1, where it represents a single pixel in the original image (regardless of 

its spatial resolution); 
� min_window represents the smallest sized kernel. In the case of a square 3 x 3 kernel, this value is 3 

(i.e., the square root of the total number of pixels in the kernel). However, in the new ‘round’ kernel, 
the smallest analyzing kernel is composed of five pixels (that make a cross in a 3 x 3 window), 
consequently the min-window value equals the square root of 5 (i.e., 5^0.5); 

� res_heur equals 0.25 (i.e., ¼) as previously discussed. 
 
Based on Equation 1, the first upscale_res equals 1.559 [i.e., 1 + (1 x 5^0.5 x 0.25)]. That is, each pixel in 
the first upscale image has a grain equal to 1.559 pixels in the panchromatic image. This represents a 
spatial resolution of 6.24 m (i.e., 4 m x 1.559 pixels). The extent of the new upscale image is obtained by 
dividing the length of the original image (i.e., 500 pixels) by 1.559, resulting in 321 pixels. Essentially, the 
upscale kernel is used as a mask to generate a weighted area value for each pixel in the following 
manner. Beginning at the origin, the upscale kernel is overlaid on the corresponding AI, and each area 
pixel (within the mask) is divided by the sum of all area pixels in the mask. This generates a fractional 
area weight that sums to one. Each area weight (in the mask) is multiplied by its corresponding original 
grey value, and then summed. This summed value represents the new area weighted upscale value that 
corresponds to the original pixels in the upscale mask. The non-overlapping upscale kernel is then 
applied to the remaining data resulting in a new upscale image. The placement of the upscale mask (i.e., 
beginning at the origin) is completely arbitrary and thus subject to the aggregation problem; however 
incorporating object-weighted values reduces this. For more detail on the inverse area weighting see Hay 
and Marceau (2004). 
 
To determine the upscale resolution for coarser scales, this process is iterated using upscale_res as the 
new pixel_size. Thus, the next upscale_res equals 2.43 [i.e., 1.559 + (1.559 x 3 x 0.25)]. That is, at the 
second upscale iteration, a single upscale pixel is now equivalent to 2.43 pixels - with a spatial resolution 
of 9.72 m (i.e., 4 m x 2.43 pixels), and an image extent of 206 pixels. When applied for two more 
iterations, the resulting upscale resolution, and grain and extent of the upscaled images are defined in 
Table 1. 
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Iterative OSA and OSU 
 

Based on promising results from early research, Hay et al. (1997) recognized that the application of 
OSA/OSU rules revealed patterns that accurately correspond to the spatial extent of objects at their next 
(coarser) scale. This led to the hypothesis that by continuously applying object-specific rules to the MI 
generated at each OSA iteration, new spatial patterns will emerge that represent dominant landscape 
objects, and that these patterns will correspond to real-world objects through a wide range of scales (Hay 
and Marceau, 1998).  
 
To test this hypothesis, Hay et al. (2001) developed an iterative multiscale framework that represents a 
nested hierarchy of two image-sets (ISt), each of which possesses membership in a unique scale domain 
(SDn). They recognized that there is often a range of scales between the end point of identifiable scale 
domains where certain image-objects exist and the point where new image-objects emerge at their next 
scale of expression (see Hay et al., 2001 for an in-depth discussion). To exploit this information, the initial 
framework was modified as follows (see Figure 2 for an overview): at the first OSA iteration (t = 1), every 
pixel in the original image (OI) is locally assessed within progressively larger kernels until a local 
maximum variance (OSAvmax) threshold is reached. When applied to the entire image, this process 
generates the first image-set (i.e., V1, A1, M1) - as previously described. In the second iteration (t = t + 1), 
each pixel in the newly generated M1 is locally assessed until a minimum variance (OSAvmin) threshold is 
reached. The resulting images become the second image-set (i.e., V2, A2, M2) where they represent the 
beginning scale of all newly emergent image-objects. 
 
Recall that minimum variance indicates that pixels are very similar, thus the corresponding image 
structures are most ‘object-like’. As a result, odd-numbered OSA iterations define scales that represent 
the spatial extent or ‘end’ of objects, while even-numbered OSA iterations define the beginning scale of 
all newly emergent image-objects. Consequently, data within the even-numbered OSA iterations (i.e., IS2, 

4, 6…) are selected for upscaling (OSU) as they contain the new image-objects we are interested in. For 
example, within IS2, OSU is applied to the newly generated Mean image (M2), resulting in a new Upscale 
image (U1) (Figure 3). U1 is then considered the new base image, and the entire OSA/OSU process is 
repeated on the new images, until the number of pixels composing them is too small for further 
processing. If upscaling were applied to the original IKONOS image several iterations further, we would 
eventually end up with the Upscale data set being represented by a single pixel with a 2000 m spatial 
resolution. 
 
The result of this iterative object-specific analysis and upscaling approach is a nested hierarchy of image-
sets (ISt), each composed of two VI, AI and MI that have membership in a unique scale domain (SDn), 
where n indicates the location of each scale domain within the nested hierarchy (Figure 4). Within each 
SDn, all images share the same grain and extent, and represent the result of multiscale analysis specific 
to the image-objects composing them. However, all images in a SDn have a coarser grain than those of 
the previous SDn-1 (due to upscaling), though they share the same extent (i.e., the same ground area) 
through all image-sets. This effect is illustrated by the Upscale images in Figure 3.  The combination of all 
SDn generated from a single image is referred to as a scale domain set (Table 1). 
 
2.2.3 Marker-controlled segmentation (MCS)    
 
Once OSA/OSU processing has been completed, and a multiscale dataset has been generated, MCS is 
used as a feature detector to automatically delineate and label individual image-objects as they evolve 
through scale. MCS is a watershed transformation technique that detects regional similarities as opposed 
to an edge-based technique that detects local changes (Beucher and Lantuéjoul, 1979; Meyer and 
Beucher, 1990). The key characteristics of this technique are the ability to reduce over-segmentation due 
to noise by placing ‘markers’ or ’seeds’ in user-specified areas, and to define regions (i.e., image-objects) 
as closed contours. 
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The MCS procedure 
 
The general feature detection procedure associated with MCS involves three steps. First, an edge 
detector is used to enhance intensity variations in an image. This type of detector is typically referred to 
as a ‘gradient operator’, and the resulting image is the ‘gradient image’ (GI). Second, a relevant marker 
set is obtained and applied to this gradient image. Third, watersheds are delineated from this combination 
of markers and edges. 
 
Pre-processing with a median filter  
 
In MOSA, the general procedure is slightly different than previously described. A detailed visual 
inspection of each VI, AI, MI reveals that a significant amount of salt and pepper (isolated high or low) 
pixel values exist in each image (Figure 4). Typically, such signals will lead to over-segmentation when a 
watershed transform is applied to them. Thus, a 3 x 3 median filter is first applied to each of the VI, AI, and 
MI, prior to watershed processing. All subsequent feature detection is then applied to these images. 
Median filtering is a nonlinear operation that replaces each point with the median of the one- or two-
dimensional neighborhood of a given width. It is similar to smoothing with a boxcar or average filter but 
preserves edges larger than the neighborhood, while simultaneously effectively reducing salt and pepper 
noise (Lim, 1990).  
 

Recall that in OSA, we are interested in the spatial/spectral relationship between pixels and the image-
objects they are a part of, thus no pre-processing or smoothing of the original image is performed. 
Consequently, the maximum H-res content is maintained in the OI. However, in the object delineation 
portion of MOSA, we are no longer interested in individual pixels, but rather unique pixel groups that 
represent specific image-objects. When we take this into consideration, along with the fact that the 
smallest object-specific kernel resides within a 3 x 3 pixel window, and that edges larger than this are 
preserved, median filtering is an excellent and effective approach for defining the spatially dominant pixel 
groups that make up the image-objects within each scale domain image. 
 
Generating new gradient images 
 
While a significant amount of edge information visually exists in each Variance image (Figure. 4), 
discretizing these edges for use as gradient images for MCS is not trivial due to their representation by a 
wide range of grey-tones. Therefore, rather than using the variance images as gradient images (GI), as 
previously done (Hall and Hay, 2003; Hall et al., 2004), new gradient images are generated for each scale 
domain by subtracting the Mean image from the corresponding resolution Upscale image (UI) and defining 
the absolute value of the result. For the gradient images displayed in Figure 5, the following equations 
were used: 
  

G2 = abs (OI – M2)       [2] 
 

G4 = abs (U1 – M4)       [3] 
 

G6 = abs (U2 – M6)       [4] 
 
Where G2, 4, 6 represent the newly generated Gradient images, abs represents the absolute value, OI 
represents the original IKONOS panchromatic image, M2, 4, 6  represent the newly generated Mean 
images, and U1-2 represent the newly generated Upscale images (Figure 3). All MCS processing is 
applied to the (median filtered) datasets generated by OSA/OSU at their native grains and extents as 
defined in Table 1.  
 
This method for generating new gradient images is similar to the technique in mathematical morphology 
where external contours (i.e., object edges) can be created by defining the difference between the original 
and the dilated image. Other contours can also be created by the difference between the original and the 
eroded image, and the dilated and the eroded image (Haralick and Shapiro, 1992). However, in each of 
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these cases, a fixed (typically arbitrarily) sized structuring element must be defined for erosion and or 
dilation, which directly influences the shape of the resulting contours. In the case of OSA, each MI 
represents the result of a dynamically sized and shaped structuring element (i.e., the object-specific 
kernel) that is specific to the different sized, shaped and spatially arranged image-objects within each 
scene. By using the absolute value, all difference, or changed values are represented by relatively large 
(i.e., bright) grey tones that exist within the tails of each GI histogram. 
 
Image-object markers 
 
Object markers are automatically generated by combining regional minima from the corresponding 
variance and area images using a logical AND operation. More specifically, the regional minima algorithm 
(imregionalmin available in Matlab) is first applied separately to the VI and AI of each SDn. In this 
algorithm, regional minima are connected components of pixels (i.e., 8-connected neighbors) with the 
same intensity value, whose external boundary pixels all have a value greater than this intensity value. 
The resulting dataset is a binary image, where values equal to one represent regional minima. Variance 
minima values represent areas of low heterogeneity that conceptually correspond to object centers. Area 
minima indicate that the object-heuristics for the pixel being assessed were met within a small analyzing 
kernel and also correspond to object centers. Based on an extensive visual analysis of the images in 
each SDn, it became evident that the local Area minima represent both image-object centers and the 
edges between two or more image-objects. Hay et al. (2001) refer to these edge locations as edge-
objects. That is, both image-objects and edge-objects are typically composed of (relatively) small area 
values. Thus, exclusively using markers derived from Area minima - as done in earlier studies (Hall et al., 
2004; Hall and Hay, 2003) - does not provide optimal results. Fortunately however, only image-objects 
are composed of both (relatively) small area, and (relatively) small variance values. Thus to ensure that 
image-objects, rather than edge-objects are defined as markers, the AND logical operator is applied to 
the regional Area minima and the regional Variance minima datasets. This produces a combined binary 
marker dataset, where only identical values (i.e., ones) are defined. For additional information see Hay 
and Marceau, (2004). 
 
Imbedded markers and watershed analysis 
 
To define individual image-objects, the new (combined) marker sets were ‘imbedded’ within the 
corresponding gradient image. More explicitly, the location of each marker set was defined within the 
appropriate gradient image using the Matlab imimposemin function. This function modifies the intensity 
image using morphological reconstruction so the intensity image only has regional minima wherever the 
binary (marker) image is nonzero. The Matlab watershed algorithm (Vincent and Soille, 1991) was then 
applied to each ‘imbedded’ image. This resulted in the generation of 10 watershed images (WI), each 
containing ‘empty’ polygons [three of which (W2, 4, 6) are overlaid on their corresponding MI and illustrated 
in Figure 5). It is important to note that only empty watershed boundaries (i.e., individual polygons) that 
separate individual image-objects are generated by this algorithm. They still need to be filled. 
 
Object labeling 
 
Each pixel in the Mean images (Figure 4) represents a member of a newly detected image-object. Since 
these images are generated from average values calculated within unique threshold kernels, they 
represent the dominant image structure defined at a specific spatial resolution within a unique scale 
domain (Hay et al., 2001). Therefore, each newly defined – though empty – watershed polygon is used as 
a mask to generate a value equal to the average of the corresponding MI pixels located within its 
perimeter (see Labeled MCS Images in Figure 5). In essence, each watershed polygon now spatially 
represents the average grey-tone, and areal extent of a unique image-object. This step is referred to as 
object labeling and represents the final step in the automatic delineation of discrete multiscale objects as 
illustrated in each of the three scale domains in Figure 5.  
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3. Discussion and conclusions 
 
In this paper, we have presented multiscale object-specific analysis (MOSA) as a hierarchical framework 
for the multiscale analysis of remote sensing imagery. This non-linear framework integrates ecological 
theory, Object-Specific Analysis (OSA), Object-Specific Upscaling (OSU), and Marker Controlled 
Watershed Segmentation (MCS) for automatic multiscale scene generation and feature extraction. A 
unique characteristic of this framework is that it allows dominant image-objects to emerge at their 
respective scales, and in addition, it requires no a priori scene information. In summary, this framework 
exhibits the following characteristics.  
 
� Object-specific analysis can be applied to any digital data regardless of whether it is considered high 

resolution (i.e., sub-meter – 5 m), medium resolution (5 – 30 m) or low resolution (greater than 30 m). 
The ability to define image-objects is dependent upon the relationship between the size of the image-
objects composing a scene, the spatial resolution of the pixels that compose the image-objects, and 
the size/shape of the analyzing kernel. Thus, if coarse grain data are used (i.e., TM, MODIS, 
AVHRR), then the spatial characteristics of relatively coarse grain image-objects will be defined. 

� The underlying ideas and heuristics are conceptually simple, are based upon strong empirical 
evidence, and follow many concepts of Complex Systems and Hierarchy theory. 

� The OSA kernel represents a close approximation of an isotropic filter (i.e., a square approximation of 
a round kernel with no preferential orientation), thus reducing the diagonal bias common in square 
kernels. In addition, we have defined and incorporated three robust empirical scale-dependent 
threshold conditions that are representative of the pixel/image-object relationship over an explicit 
range of scales, thus supporting the concept of scale domains.  

� OSA/OSU allows for upscaling between objects and within an image hierarchy, where it incorporates 
the idea of a ‘generic’ point spread function in relation to object size for determining an appropriate 
upscale resolution for the next iteration of processing (Hay et al., 2001).  

� OSU incorporates object-specific weights, thus minimizing the effects of the modifiable areal unit 
problem (MAUP). 

� Land-cover classifications have been shown to improve with the addition of object-specific datasets 
as additional logic channels (Hall et al., 2004).  

� OSA/OSU has been statistically proven to produce better-upscaling results than cubic convolution, 
bilinear interpolation, nearest neighbour and non-overlapping averaging (Hay et al., 1997). 

� MCS is well documented in the literature, and watershed segmentation algorithms are commonly 
available in popular image processing packages. 

� Decomposability is possible by mapping each OSA/OSU image to corresponding Mean and Area 
dataset; thus the ability exists for explicitly tracking information over scales in a bottom up, and top 
down approach (see Hay and Marceau, 2004 for detailed information). 

� One of the greatest limitations of the MOSA is that it has not yet been tested over a large number of 
different landscapes, or by a significant number of researchers. However, further testing and 
validation are underway. In addition, no commercial software is available and its object modeling is 
done empirically. Thus, the results of multiscale analysis require validation against field data, which 
becomes difficult if not impossible as scales become coarser. However, OSU takes into account the 
relationship between the pixel size and the image-objects from which the original OSA heuristics were 
developed. Thus at fine scales, results visually model known image-objects very well. Therefore, a 
precedent exists on which to base results at coarser unverifiable image-scales. 

� While the incorporation of MCS into MOSA represents an elegant feature detection solution that 
capitalizes on the explicit object information inherent to the Variance, Area and Mean datasets, 
further refinement of automatically defined marker sets is required – particularly for coarser scale 
delineation. 

 
Currently there is no integrated topological solution in MOSA for hierarchically linking and querying 
delineated image-objects through scale; however, an extended goal of MOSA includes not only 
automated object-specific feature detection as described here, but also the classification (Hall et al., 
2004) and linking of image-objects through scale (Hay et al., 2003). At present, we are developing a 
topological mechanism similar to that described by Hay et al., (2002b) for the linking and querying of 
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multiscale Scale-Space blobs. Once completed and implemented in MOSA, the spatial characteristics of 
individual image-objects can be assessed using spatial statistics and landscape metrics to evaluate how 
landscape components (i.e., image-objects) become fragmented and/or connected to each other through 
scale.  
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Table 1. Information resulting from generating a scale domain set (SDn) 
 

 

 
SDn 

 
ISt Components OSAt 

 
OSUn 

 

Upscale 
Resolution (OI

pixels) 

 
Grain (m2) 

 

Extent 
(pixels2) 

 

 
# Pixels 

 
 

OI   
 

1.0 
 

4.0 500  250000 
SD1 IS1  = V1, A1, M1 1   4.0 500 250000 

 IS2  = V2, A2, M2 
 

2 
  

 4.0 500  
 

250000 
 

 U1  1 1.559 6.24 321 103041 
    SD2 IS3  = V3, A3, M3 3   6.24 321 103041 

 IS4  = V4, A4, M4 4 
  

 6.24 321 
 

103041 
 

 U2  2 2.430 9.72 206 42436 
    SD3 IS5  = V5, A5, M5 5   9.72 206 42436 

 IS6  = V6, A6, M6 6 
  

 9.72 206 
 

42436 
 

 U3  3 3.789 15.16 132 17424 
    SD4 IS7  = V7, A7, M7 7   15.16 132 17424 
 IS8  = V8, A8, M8 8 

 
 15.16 132 

 
17424 

 
 U4  4 5.907 23.88 85 7225 

    SD5   IS9  = V9, A9, M9 9   23.88 85 7225 
   IS10  = V10, A10, M10 10   23.88 85 7225 
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